\[\boxed{\mathbf{1256}\mathbf{.}}\]
\[1)\sin^{4}x + \cos^{4}x = \frac{1}{2}\sin^{2}{2x}\ \]
\[1 = \left( \sin^{2}x + \cos^{2}x \right)^{2} = \sin^{4}x +\]
\[+ 2\sin^{2}x\cos^{2}x + \cos^{4}x =\]
\[= \cos^{4}x + \frac{1}{2}\sin^{2}{2x} + \sin^{4}x\]
\[\sin^{4}x + \cos^{4}x = 1 - \frac{1}{2}\sin^{2}{2x}\]
\[1 - \frac{1}{2}\sin^{2}{2x} = \frac{1}{2}\sin^{2}{2x}\]
\[\sin^{2}{2x} = 1\]
\[\sin{2x} = \pm 1\]
\[2x = \frac{\pi}{2} + \pi n\]
\[x = \frac{\pi}{4} + \pi n.\]
\[2)\sin^{6}x + \cos^{6}x = \frac{1}{4}\]
\[\sin^{6}x + \cos^{6}x =\]
\[= \left( \sin^{2}x + \cos^{2}x \right) \bullet\]
\[\bullet \left( \sin^{4}x - \sin^{2}x\cos^{2}x + \cos^{4}x \right) =\]
\[= \left( \sin^{2}x + \cos^{2}x \right) - \frac{3}{4}\sin^{2}{2x} =\]
\[= - \frac{3}{4}\sin^{2}{2x} + 1\]
\[- \frac{3}{4}\sin^{2}{2x} + 1 = \frac{1}{4}\]
\[1 - \frac{3}{4} \cdot \frac{1 - \cos{4x}}{2} = \frac{1}{4}\]
\[\cos{4x} = - 1\]
\[4x = \pi + 2\pi n\]
\[x = \frac{\pi}{4} + \frac{\text{πn}}{2}.\]
\[3)\sin^{2}x + \sin^{2}{2x} = \sin^{2}{3x}\]
\[\frac{1}{2} - \frac{1}{2}\cos{2x} + \frac{1}{2} - \frac{1}{2}\cos{4x} =\]
\[= \sin^{2}{3x}\]
\[\cos{3x}\cos x = 1 - \sin^{2}{3x}\]
\[\cos{3x}\cos x = \cos^{2}{3x}\]
\[\cos{3x}\left( \cos x - \cos{3x} \right) = 0\]
\[\cos{3x} = 0\]
\[3x = \frac{\pi}{2} + \pi n\]
\[x = \frac{\pi}{6} + \frac{\text{πn}}{3}.\]
\[\cos x - \cos{3x} = 0\]
\[\sin{2x}\sin x = 0\]
\[\sin{2x} = 0\]
\[2x = \pi n\]
\[x = \frac{\text{πn}}{2}.\]
\[\sin x = 0\]
\[x = \pi n.\]
\[4)\cos^{2}x + \cos^{2}{2x} = \sin^{2}{3x} +\]
\[+ \sin^{2}{4x}\]
\[\frac{1}{2} + \frac{1}{2}\cos{2x} + \frac{1}{2} + \frac{1}{2}\cos{4x} =\]
\[= \frac{1}{2} - \frac{1}{2}\cos{6x} + \frac{1}{2} - \frac{1}{2}\cos{8x}\]
\[\cos{2x} + \cos{4x} =\]
\[= - \left( \cos{6x} + \cos{8x} \right)\]
\[2\cos{3x}\cos x = - 2\cos{7x}\cos x\]
\[2\cos x(\cos{3x + \cos{7x})} = 0\]
\[\cos x = 0\]
\[x = \frac{\pi}{2} + \pi n.\]
\[\cos{3x} + \cos{7x} = 0\]
\[\cos{5x}\cos{2x} = 0\]
\[\cos{5x} = 0\]
\[5x = \frac{\pi}{2} + \pi n\]
\[x = \frac{\pi}{10} + \frac{\text{πn}}{5}.\]
\[\cos{2x} = 0\]
\[2x = \frac{\pi}{2} + \pi n\]
\[x = \frac{\pi}{4} + \frac{\text{πn}}{2}.\]