\[\boxed{\mathbf{1254}\mathbf{.}}\]
\[1)\ 2\cos{3x} = 3\sin x + \cos x\]
\[2\cos{3x} + 2\cos x = 3\sin x +\]
\[+ 3\cos x\]
\[2 \bullet 2 \bullet \cos\frac{3x + x}{2} \bullet \cos\frac{3x - x}{2} =\]
\[= 3\left( \sin x + \cos x \right)\]
\[4 \bullet \cos{2x} \bullet \cos x =\]
\[= 3\left( \sin x + \cos x \right)\]
\[4\left( \cos^{2}x - \sin^{2}x \right) \bullet \cos x =\]
\[= 3\left( \sin x + \cos x \right)\]
\[4\left( \cos x - \sin x \right)\left( \cos x + \sin x \right) \bullet\]
\[\bullet \cos x - 3\left( \sin x + \cos x \right) = 0\]
\[\left( \sin x + \cos x \right) \bullet\]
\[\bullet \left( 4\cos^{2}x - 4\sin x \bullet \cos x - 3 \right) =\]
\[= 0\]
\[4\cos^{2}x - 4\sin x \bullet \cos x - 3 = 0\]
\[4\cos^{2}x - 4\sin x \bullet \cos x -\]
\[- 3\left( \cos^{2}x + \sin^{2}x \right) = 0\]
\[\cos^{2}x - 4\sin x \bullet \cos x -\]
\[- 3\sin^{2}x = 0\ \ \ \ \ |\ :\cos^{2}x\]
\[1 - 4\ tg\ x - 3\ tg^{2}\ x = 0\]
\[Пусть\ y = tg\ x:\]
\[1 - 4y - 3y^{2} = 0\]
\[3y^{2} + 4y - 1 = 0\]
\[D = 4^{2} + 4 \bullet 3 = 16 + 12 = 28\]
\[y = \frac{- 4 \pm 2\sqrt{7}}{2 \bullet 3} = \frac{- 2 \pm \sqrt{7}}{3}.\]
\[Первое\ уравнение:\]
\[\sin x + \cos x = 0\ \ \ \ \ |\ :\cos x\]
\[tg\ x + 1 = 0\]
\[tg\ x = - 1\]
\[x = - arctg\ 1 + \pi n = - \frac{\pi}{4} + \pi n.\]
\[Второе\ уравнение:\]
\[tg\ x = \frac{- 2 - \sqrt{7}}{3} = - \frac{2 + \sqrt{7}}{3}\]
\[x = - arctg\frac{2 + \sqrt{7}}{3} + \pi n.\]
\[Третье\ уравнение:\]
\[tg\ x = \frac{- 2 + \sqrt{7}}{3}\]
\[x = arctg\frac{\sqrt{7} - 2}{3} + \pi n.\]
\[Ответ:\ - \frac{\pi}{4} + \pi n;\ \ \]
\[- arctg\frac{2 + \sqrt{7}}{3} + \pi n;\ \]
\[\text{\ arctg}\frac{\sqrt{7} - 2}{3} + \pi n.\]
\[2)\cos{3x} - \cos{2x} = \sin{3x}\]
\[Воспользуемся\ формулами\]
\[\ тройного\ угла:\]
\[4\cos^{3}x - 3\cos x - \cos{2x} =\]
\[= 3\sin x - 4\sin^{3}x\]
\[4\left( \cos^{3}x + \sin^{3}x \right) -\]
\[- 3\left( \cos x + \sin x \right) - \cos{2x} = 0\]
\[4\left( \cos x + \sin x \right) \bullet\]
\[\bullet \left( \cos^{2}x - \cos x \bullet \sin x + \sin^{2}x \right) -\]
\[- 3\left( \cos x + \sin x \right) - \cos{2x} = 0\]
\[4\left( \cos x + \sin x \right) \bullet\]
\[\bullet \left( 1 - \cos x \bullet \sin x \right) -\]
\[- 3\left( \cos x + \sin x \right) -\]
\[- \left( \cos^{2}x - \sin^{2}x \right) = 0\]
\[\left( \cos x + \sin x \right) \bullet\]
\[\bullet \left( 4 - 4\cos x \bullet \sin x - 3 - \left( \cos x - \sin x \right) \right) =\]
\[= 0\]
\[\left( \cos x + \sin x \right) \bullet\]
\[Пусть\ y = \cos x - \sin x:\]
\[4 + 4 \bullet \frac{y^{2} - 1}{2} - 3 - y = 0\]
\(4 + 2y^{2} - 2 - 3 - y = 0\)
\[2y^{2} - y - 1 = 0\]
\[D = 1^{2} + 4 \bullet 2 = 1 + 8 = 9\]
\[y_{1} = \frac{1 - 3}{2 \bullet 2} = - \frac{2}{4} = - \frac{1}{2}\text{\ \ }и\ \]
\[\ y_{2} = \frac{1 + 3}{2 \bullet 2} = 1.\]
\[Первое\ уравнение:\]
\[\cos x + \sin x = 0\ \ \ \ \ |\ :\cos x\]
\[1 + tg\ x = 0\]
\[tg\ x = - 1\]
\[x = - arctg\ 1 + \pi n = - \frac{\pi}{4} + \pi n.\]
\[Второе\ уравнение:\]
\[\cos x - \sin x = - \frac{1}{2}\ \ \ \ \ |\ :\sqrt{2}\]
\[\frac{\sqrt{2}}{2} \bullet \cos x - \frac{\sqrt{2}}{2} \bullet \sin x = - \frac{1}{2\sqrt{2}}\]
\[\sin\frac{\pi}{4} \bullet \cos x - \cos\frac{\pi}{4} \bullet \sin x =\]
\[= - \frac{\sqrt{2}}{4}\]
\[\sin x \bullet \cos\frac{\pi}{4} - \sin\frac{\pi}{4} \bullet \cos x = \frac{\sqrt{2}}{4}\]
\[\sin\left( x - \frac{\pi}{4} \right) = \frac{\sqrt{2}}{4}\]
\[x - \frac{\pi}{4} = ( - 1)^{n} \bullet \arcsin\frac{\sqrt{2}}{4} + \pi n\]
\[x = \frac{\pi}{4} + ( - 1)^{n} \bullet \arcsin\frac{\sqrt{2}}{4} + \pi n.\]
\[Третье\ уравнение:\]
\[\cos x - \sin x = 1\ \ \ \ \ |\ :\ \sqrt{2}\]
\[\frac{\sqrt{2}}{2}\cos x - \frac{\sqrt{2}}{2}\sin x = \frac{\sqrt{2}}{2}\]
\[\cos\frac{\pi}{4} \bullet \cos x - \sin\frac{\pi}{4} \bullet \sin x = \frac{\sqrt{2}}{2}\]
\[\cos\left( \frac{\pi}{4} + x \right) = \frac{\sqrt{2}}{2}\]
\[x + \frac{\pi}{4} = \pm \arccos\frac{\sqrt{2}}{2} + 2\pi n =\]
\[= \pm \frac{\pi}{4} + 2\pi n\]
\[x_{1} = - \frac{\pi}{4} - \frac{\pi}{4} + 2\pi n =\]
\[= - \frac{\pi}{2} + 2\pi n;\]
\[x_{2} = + \frac{\pi}{4} - \frac{\pi}{4} + 2\pi n = 2\pi n.\]
\[Ответ:\ - \frac{\pi}{4} + \pi n;\ \]
\[\ \frac{\pi}{4} + ( - 1)^{n} \bullet \arcsin\frac{\sqrt{2}}{4} + \pi n;\ \ \]
\[2\pi n;\ \ - \frac{\pi}{2} + 2\pi n.\]