\[\boxed{\mathbf{1252}\mathbf{.}}\]
\[1)\ \frac{\sin{2x}}{\sin x} = 0\]
\[Первое\ уравнение:\]
\[\sin{2x} = 0\]
\[2x = \arcsin 0 + \pi n = \pi n\]
\[x = \frac{\text{πn}}{2}.\]
\[Второе\ уравнение:\]
\[\sin x \neq 0\]
\[x \neq \arcsin 0 + \pi n = \pi n.\]
\[Ответ:\ \ \frac{\pi}{2} + \pi n.\]
\[2)\ \frac{\sin{3x}}{\sin x} = 0\]
\[Первое\ уравнение:\]
\[\sin{3x} = 0\]
\[3x = \arcsin 0 + \pi n = \pi n\]
\[x = \frac{\text{πn}}{3}.\]
\[Второе\ уравнение:\]
\[\sin x \neq 0\]
\[x \neq \arcsin 0 + \pi n = \pi n.\]
\[Ответ:\ \pm \frac{\pi}{3} + \pi n.\]
\[3)\ \frac{\cos{2x}}{\cos x} = 0\]
\[Первое\ уравнение:\]
\[\cos{2x} = 0\]
\[2x = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n\]
\[x = \frac{1}{2} \bullet \left( \frac{\pi}{2} + \pi n \right) = \frac{\pi}{4} + \frac{\text{πn}}{2}.\]
\[Второе\ уравнение:\]
\[\cos x \neq 0\]
\[x \neq \arccos 0 + \pi n = \frac{\pi}{2} + \pi n.\]
\[Ответ:\ \ \frac{\pi}{4} + \frac{\text{πn}}{2}.\]
\[4)\ \frac{\cos{3x}}{\cos x} = 0\]
\[Первое\ уравнение:\]
\[\cos{3x} = 0\]
\[3x = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n\]
\[x = \frac{1}{3} \bullet \left( \frac{\pi}{2} + \pi n \right) = \frac{\pi}{6} + \frac{\text{πn}}{3}.\]
\[Второе\ уравнение:\]
\[\cos x \neq 0\]
\[x \neq \arccos 0 + \pi n = \frac{\pi}{2} + \pi n.\]
\[Ответ:\ \pm \frac{\pi}{6} + \pi n.\]
\[5)\ \frac{\sin x}{\sin{5x}} = 0\]
\[Первое\ уравнение:\]
\[\sin x = 0\]
\[x = \arcsin 0 + \pi n = \pi n.\]
\[Второе\ уравнение:\]
\[\sin{5x} \neq 0\]
\[5x \neq \arcsin 0 + \pi n = \pi n\]
\[x \neq \frac{\text{πn}}{5}.\]
\[Ответ:\ \ решений\ нет.\]
\[6)\ \frac{\cos x}{\cos{7x}} = 0\]
\[Первое\ уравнение:\]
\[\cos x = 0\]
\[x = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n.\]
\[Второе\ уравнение:\]
\[\cos{7x} \neq 0\]
\[7x \neq \arccos 0 + \pi n = \frac{\pi}{2} + \pi n\]
\[x \neq \frac{1}{7} \bullet \left( \frac{\pi}{2} + \pi n \right) = \frac{\pi}{14} + \frac{\text{πn}}{7}.\]
\[Ответ:\ \ решений\ нет.\]