\[\boxed{\mathbf{1234}\mathbf{.}}\]
\[1)\ 2\sin^{2}x + \sin x = 0\]
\[Пусть\ y = \sin x:\]
\[2y^{2} + y = 0\]
\[y(2y + 1) = 0\]
\[y_{1} = 0\ \ и\ \ y_{2} = - \frac{1}{2}.\]
\[Первое\ уравнение:\]
\[\sin x = 0\]
\[x = \arcsin 0 + \pi n = \pi n.\]
\[Второе\ уравнение:\]
\[\sin x = - \frac{1}{2}\]
\[x = ( - 1)^{n + 1} \bullet \arcsin\frac{1}{2} + \pi n =\]
\[= ( - 1)^{n + 1} \bullet \frac{\pi}{6} + \pi n.\]
\[Ответ:\ \ \pi n\ \ ( - 1)^{n + 1} \bullet \frac{\pi}{6} + \pi n.\]
\[2)\ 3\sin^{2}x - 5\sin x - 2 = 0\]
\[Пусть\ y = \sin x:\]
\[3y^{2} - 5y - 2 = 0\]
\[D = 5^{2} + 4 \bullet 3 \bullet 2 = 25 + 24 =\]
\[= 49\]
\[y_{1} = \frac{5 - 7}{2 \bullet 3} = - \frac{2}{6} = - \frac{1}{3}\text{\ \ }и\ \]
\[\ y_{2} = \frac{5 + 7}{2 \bullet 3} = 2.\]
\[Первое\ уравнение:\]
\[\sin x = - \frac{1}{3}\]
\[x = ( - 1)^{n + 1} \bullet \arcsin\frac{1}{3} + \pi n.\]
\[Второе\ уравнение:\]
\[\sin x = 2 - корней\ нет.\]
\[Ответ:\ \ ( - 1)^{n + 1} \bullet \arcsin\frac{1}{3} + \pi n.\]
\[3)\cos^{2}x - 2\cos x = 0\]
\[Пусть\ y = \cos x:\]
\[y^{2} - 2y = 0\]
\[y(y - 2) = 0\]
\[y_{1} = 0\ \ и\ \ y_{2} = 2.\]
\[Первое\ уравнение:\]
\[\cos x = 0\]
\[x = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n.\]
\[Второе\ уравнение:\]
\[\cos x = 2 - корней\ нет.\]
\[Ответ:\ \ \frac{\pi}{2} + \pi n.\]
\[4)\ 6\cos^{2}x + 7\cos x - 3 = 0\]
\[Пусть\ y = \cos x:\]
\[6y^{2} + 7y - 3 = 0\]
\[D = 7^{2} + 4 \bullet 6 \bullet 3 = 49 + 72 =\]
\[= 121 = 11^{2}\]
\[y_{1} = \frac{- 7 - 11}{2 \bullet 6} = - \frac{18}{12} = - \frac{3}{2}\text{\ \ }и\ \]
\[\ y_{2} = \frac{- 7 + 11}{2 \bullet 6} = \frac{4}{12} = \frac{1}{3}.\]
\[Первое\ уравнение:\]
\[\cos x = - \frac{3}{2} - корней\ нет.\]
\[Второе\ уравнение:\]
\[\cos x = \frac{1}{3}\]
\[x = \pm \arccos\frac{1}{3} + 2\pi n.\]
\[Ответ:\ \pm \arccos\frac{1}{3} + 2\pi n.\]