\[\boxed{\mathbf{1229}\mathbf{.}}\]
\[1)\ 2\arcsin\frac{\sqrt{3}}{2} + 3\arcsin\left( - \frac{1}{2} \right) =\]
\[= 2 \bullet \frac{\pi}{3} - 3\arcsin\frac{1}{2} = \frac{2\pi}{3} -\]
\[- 3 \bullet \frac{\pi}{6} = \frac{4\pi}{6} - \frac{3\pi}{6} = \frac{\pi}{6}\]
\[2)\arcsin\frac{1}{\sqrt{2}} - 4\arcsin 1 = \frac{\pi}{4} -\]
\[- 4 \bullet \frac{\pi}{2} = \frac{\pi}{4} - 2\pi = \frac{\pi}{4} -\]
\[- \frac{8\pi}{4} = - \frac{7\pi}{4}\]
\[3)\arccos\left( - \frac{1}{2} \right) - \arcsin\frac{\sqrt{3}}{2} =\]
\[= \pi - \arccos\frac{1}{2} - \frac{\pi}{3} =\]
\[= \frac{3\pi}{3} - \frac{\pi}{3} - \frac{\pi}{3} = \frac{\pi}{3}\]
\[4)\arccos( - 1) - \arcsin( - 1) =\]
\[= \pi - \arccos 1 + \arcsin 1 =\]
\[= \pi - 0 + \frac{\pi}{2} = \frac{3\pi}{2}\]