\[\boxed{\mathbf{1227}\mathbf{.}}\]
\[1)\sin^{2}x + 2\sin x > 0\]
\[Пусть\ y = \sin x:\]
\[y^{2} + 2y > 0\]
\[y(y + 2) > 0\]
\[y < - 2\ или\ y > 0\]
\[Первое\ неравенство:\]
\[\sin x < - 2 - решений\ нет;\]
\[\sin x \neq - 2\]
\[x \neq ( - 1)^{n + 1} \bullet \arcsin 2 + \pi n.\]
\[Второе\ неравенство:\]
\[\sin x > 0\]
\[\arcsin 0 + 2\pi n < x < \pi -\]
\[- \arcsin 0 + 2\pi n\]
\[2\pi n < x < \pi + 2\pi n.\]
\[Ответ:\ \ 2\pi n < x < \pi + 2\pi n.\]
\[2)\cos^{2}x - \cos x \leq 0\]
\[Пусть\ y = \cos x:\]
\[y^{2} - y \leq 0\]
\[y(y - 1) \leq 0\]
\[0 \leq y \leq 1\]
\[Первое\ неравенство:\]
\[\cos x \geq 0\]
\[- \arccos 0 +\]
\[+ 2\pi n \leq x \leq \arccos a + 2\pi n\]
\[- \frac{\pi}{2} + 2\pi n \leq x \leq \frac{\pi}{2} + 2\pi n.\]
\[Второе\ неравенство:\]
\[\cos x \leq 1 - при\ любом\ x.\]
\[Ответ:\ - \frac{\pi}{2} + 2\pi n \leq x \leq \frac{\pi}{2} +\]
\[+ 2\pi n.\]
\[3)\ 2\sin^{2}x - \sin x - 3 < 0\]
\[Пусть\sin x = y:\]
\[2y^{2} - y - 3 < 0\]
\[D = 1 + 24 = 25\]
\[y_{1} = \frac{1 + 5}{4} = \frac{3}{2};\ \ \ \]
\[y_{2} = \frac{1 - 5}{4} = - 1.\]
\[(y + 1)(y - 1,5) < 0\]
\[- 1 < y < 1,5.\]
\[- 1 < \sin y < 1,5\]
\[\text{sin\ }x \neq - 1\]
\[x \neq - \pi + 2\pi n.\]
\[Ответ:x - любое\ число,\]
\[\ кроме\ \ x = - \pi + 2\pi n.\]
\[4)\ 2\cos^{2}x - 3\cos x - 2 > 0\]
\[Пусть\cos x = y:\]
\[2y^{2} - 3y - 2 > 0\]
\[D = 9 + 16 = 25\]
\[y_{1} = \frac{3 + 5}{4} = 2;\ \ \ \]
\[y_{2} = \frac{3 - 5}{4} = - \frac{1}{2}\]
\[\left( y + \frac{1}{2} \right)(y - 2) > 0\]
\[y < - \frac{1}{2};\ \ \ y > 2.\]
\[\cos x < - \frac{1}{2}\]
\[\frac{2\pi}{3} + 2\pi n < x < \frac{4\pi}{3} + 2\pi n.\]
\[Ответ:\ \frac{2\pi}{3} + 2\pi n < x < \frac{4\pi}{3} +\]
\[+ 2\pi n.\]