\[\boxed{\mathbf{1225}\mathbf{.}}\]
\[1)\ \sqrt{2}\cos{2x} \leq 1\]
\[\cos{2x} \leq \frac{1}{\sqrt{2}}\]
\[\arccos\frac{1}{\sqrt{2}} + 2\pi n \leq 2x \leq 2\pi -\]
\[- \arccos\frac{1}{\sqrt{2}} + 2\pi n\]
\[\frac{\pi}{4} + 2\pi n \leq 2x \leq 2\pi - \frac{\pi}{4} + 2\pi n\]
\[\frac{\pi}{4} + 2\pi n \leq 2x \leq \frac{7\pi}{4} + 2\pi n\]
\[Ответ:\ \frac{\pi}{8} + \pi n \leq x \leq \frac{7\pi}{8} + \pi n.\]
\[2)\ 2\sin{3x} > - 1\]
\[\sin{3x} > - \frac{1}{2}\]
\[\arcsin\left( - \frac{1}{2} \right) + 2\pi n < 3x < \pi -\]
\[- \arcsin\left( - \frac{1}{2} \right) + 2\pi n\]
\[- \arcsin\frac{1}{2} + 2\pi n < 3x < \pi +\]
\[+ \arcsin\frac{1}{2} + 2\pi n\]
\[- \frac{\pi}{6} + 2\pi n < 3x < \pi + \frac{\pi}{6} + 2\pi n\]
\[- \frac{\pi}{6} + 2\pi n < 3x < \frac{7\pi}{6} + 2\pi n\]
\[Ответ:\ - \frac{\pi}{18} + \frac{2\pi n}{3} < x < \frac{7\pi}{18} +\]
\[+ \frac{2\pi n}{3}.\]