\[\boxed{\mathbf{1208}\mathbf{.}}\]
\[1)\ 1 - \cos(\pi - x) +\]
\[+ \sin\left( \frac{\pi}{2} + \frac{x}{2} \right) = 0\]
\[1 + \cos x + \cos\frac{x}{2} = 0\]
\[2\cos^{2}\frac{x}{2} + \cos\frac{x}{2} = 0\]
\[\cos\frac{x}{2} \bullet \left( 2\cos\frac{x}{2} + 1 \right) = 0\]
\[Первое\ уравнение:\]
\[\cos\frac{x}{2} = 0\]
\[\frac{x}{2} = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n\]
\[x = 2 \bullet \left( \frac{\pi}{2} + \pi n \right) = \pi + 2\pi n.\]
\[Второе\ уравнение:\]
\[2\cos\frac{x}{2} + 1 = 0\]
\[2\cos\frac{x}{2} = - 1\]
\[\cos\frac{x}{2} = - \frac{1}{2}\]
\[\frac{x}{2} = \pm \left( \pi - \arccos\frac{1}{2} \right) + 2\pi n =\]
\[= \pm \left( \pi - \frac{\pi}{3} \right) + 2\pi n =\]
\[= \pm \frac{2\pi}{3} + 2\pi n\]
\[x = 2 \bullet \left( \pm \frac{2\pi}{3} + 2\pi n \right) =\]
\[= \pm \frac{4\pi}{3} + 4\pi n.\]
\[Ответ:\ \ \pi + 2\pi n;\ \ \pm \frac{4\pi}{3} + 4\pi n.\]
\[2)\ \sqrt{2}\cos\left( x - \frac{\pi}{4} \right) =\]
\[= \left( \sin x + \cos x \right)^{2}\]
\[\sqrt{2} \bullet\]
\[\bullet \left( \cos x \bullet \cos\frac{\pi}{4} + \sin x \bullet \sin\frac{\pi}{4} \right) =\]
\[= \left( \sin x + \cos x \right)^{2}\]
\[\sqrt{2} \bullet \left( \frac{1}{\sqrt{2}} \bullet \cos x + \frac{1}{\sqrt{2}} \bullet \sin x \right) =\]
\[= \left( \sin x + \cos x \right)^{2}\]
\[\cos x + \sin x = \left( \sin x + \cos x \right)^{2}\]
\[Первое\ уравнение:\]
\[\sin x + \cos x = 0\ \ \ \ \ |\ :\cos x\]
\[tg\ x + 1 = 0\]
\[tg\ x = - 1\]
\[x = - arctg\ 1 + \pi n = - \frac{\pi}{4} + \pi n.\]
\[Второе\ уравнение:\]
\[\sin x + \cos x = 1\ \ \ \ \ |\ :\sqrt{2}\]
\[\frac{\sqrt{2}}{2} \bullet \sin x + \frac{\sqrt{2}}{2} \bullet \cos x = \frac{\sqrt{2}}{2}\]
\[\sin\frac{\pi}{4} \bullet \sin x + \cos\frac{\pi}{4} \bullet \cos x = \frac{\sqrt{2}}{2}\]
\[\cos\left( x - \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2}\]
\[x - \frac{\pi}{4} = \pm \arccos\frac{\sqrt{2}}{2} + 2\pi n =\]
\[= \pm \frac{\pi}{4} + 2\pi n\]
\[x_{1} = - \frac{\pi}{4} + \frac{\pi}{4} + 2\pi n = 2\pi n;\]
\[x_{2} = + \frac{\pi}{4} + \frac{\pi}{4} + 2\pi n = \frac{\pi}{2} + 2\pi n.\]
\[Ответ:\ - \frac{\pi}{4} + \pi n;\ \ 2\pi n;\ \ \]
\[\frac{\pi}{2} + 2\pi n.\]
\[3)\ 1 + \cos x = ctg\frac{x}{2}\]
\[\cos^{2}\frac{x}{2} = \frac{\cos\frac{x}{2}}{\sin\frac{x}{2}}\]
\[1)\cos\frac{x}{2} = 0\]
\[\frac{x}{2} = \frac{\pi}{2} + \pi k\]
\[x = \pi + 2\pi k.\]
\[1 + \frac{1 - \text{tg}^{2}\frac{x}{2}}{1 + \text{tg}^{2}\frac{x}{2}} = \frac{1}{\text{tg}\frac{x}{2}}\]
\[Пусть\ tg\frac{x}{2} = y:\]
\[1 + \frac{1 - y^{2}}{1 + y²} = \frac{1}{y}\]
\[2y = y^{2} + 1\]
\[y^{2} - 2y + 1 = 0\]
\[(y - 1)^{2} = 0\]
\[y = 1\]
\[2)\ tg\frac{x}{2} = 1\]
\[\frac{x}{2} = \frac{\pi}{4} + \pi k\]
\[x = \frac{\pi}{2} + 2\pi k.\]
\[Ответ:\ \ \pi + 2\pi k;\ \ \frac{\pi}{2} + 2\pi k.\]
\[4)\sin x + tg\frac{x}{2} = 0\]
\[\frac{2\ tg\frac{x}{2}}{1 + tg^{2}\frac{x}{2}} + tg\frac{x}{2} = 0\]
\[Пусть\ tg\frac{x}{2} = y:\]
\[\frac{2y}{1 + y^{2}} + y = 0\]
\[2y + y + y^{3} = 0\]
\[3y + y^{3} = 0\]
\[y\left( 3 + y^{2} \right) = 0\]
\[y = 0;\ \ \ y^{2} = - 3 \rightarrow нет\ корней.\]
\[\text{tg}\frac{x}{2} = 0\]
\[\frac{x}{2} = \pi k\]
\[x = 2\pi k.\]
\[Ответ:2\pi k.\]