\[\boxed{\mathbf{1205}\mathbf{.}}\]
\[1)\ \sqrt{3}\sin x \bullet \cos x = \sin^{2}x\]
\[\sqrt{3}\sin x \bullet \cos x - \sin^{2}x = 0\]
\[\sin x \bullet \left( \sqrt{3}\cos x - \sin x \right) = 0\]
\[Первое\ уравнение:\]
\[\sin x = 0\]
\[x = \arcsin 0 + \pi n = \pi n.\]
\[Второе\ уравнение:\]
\[\sqrt{3}\cos x - \sin x = 0\ \ \ \ \ |\ :\cos x\]
\[\sqrt{3} - tg\ x = 0\]
\[tg\ x = \sqrt{3}\]
\[x = arctg\ \sqrt{3} + \pi n = \frac{\pi}{3} + gn.\]
\[Ответ:\ \ \pi n;\ \ \frac{\pi}{3} + \pi n.\]
\[2)\ 2\sin x \bullet \cos x = \cos x\]
\[2\sin x \bullet \cos x - \cos x = 0\]
\[\cos x \bullet \left( 2\sin x - 1 \right) = 0\]
\[Первое\ уравнение:\]
\[\cos x = 0\]
\[x = arctg\ 0 + \pi n = \frac{\pi}{2} + \pi n.\]
\[Второе\ уравнение:\]
\[2\sin x - 1 = 0\]
\[2\sin x = 1\]
\[\sin x = \frac{1}{2}\]
\[x = ( - 1)^{n} \bullet \arcsin\frac{1}{2} + \pi n =\]
\[= ( - 1)^{n} \bullet \frac{\pi}{6} + \pi n.\]
\[Ответ:\ \ \frac{\pi}{2} + \pi n;\ \ ( - 1)^{n} \bullet \frac{\pi}{6} + \pi n.\]
\[3)\sin{4x} + \sin^{2}{2x} = 0\]
\[2 \bullet \sin{2x} \bullet \cos{2x} + \sin^{2}{2x} = 0\]
\[\sin{2x} \bullet \left( 2\cos{2x} + \sin{2x} \right) = 0\]
\[Первое\ уравнение:\]
\[\sin{2x} = 0\]
\[2x = \arcsin 0 + \pi n = \pi n\]
\[x = \frac{1}{2} \bullet \pi n = \frac{\text{πn}}{2}.\]
\[Второе\ уравнение:\]
\[2\cos{2x} + \sin{2x} = 0\ \ \ \ \ |\ :\cos{2x}\]
\[2 + tg\ 2x = 0\]
\[tg\ 2x = - 2\]
\[2x = - arctg\ 2 + \pi n\]
\[x = \frac{1}{2} \bullet ( - arctg\ 2 + \pi n) =\]
\[= - \frac{1}{2}arctg\ 2 + \frac{\text{πn}}{2}.\]
\[Ответ:\ \ \frac{\text{πn}}{2};\ \ - \frac{1}{2}arctg\ 2 + \frac{\text{πn}}{2}.\]
\[4)\sin{2x} + 2\cos^{2}x = 0\]
\[2 \bullet \sin x \bullet \cos x + 2\cos^{2}x = 0\]
\[2\cos x \bullet \left( \sin x + \cos x \right) = 0\]
\[Первое\ уравнение:\]
\[2\cos x = 0\]
\[\cos x = 0\]
\[x = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n.\]
\[Второе\ уравнение:\]
\[\sin x + \cos x = 0\ \ \ \ \ |\ :\cos x\]
\[tg\ x + 1 = 0\]
\[tg\ x = - 1\]
\[x = - arctg\ 1 + \pi n = - \frac{\pi}{4} + \pi n.\]
\[Ответ:\ \ \frac{\pi}{2} + \pi n;\ \ - \frac{\pi}{4} + \pi n.\]