\[\boxed{\mathbf{1196}\mathbf{.}}\]
\[1)\cos x = \sin x\ \ \ \ \ |\ :\cos x\ \]
\[1 = tg\ x\]
\[x = arctg\ 1 + \pi n = \frac{\pi}{4} + \pi n\]
\[Ответ:\ \ \frac{\pi}{4} + \pi n.\]
\[2)\sin x + \cos x = 0\ \ \ \ \ |\ :\cos x\]
\[tg\ x + 1 = 0\]
\[tgx = - 1\]
\[x = - \frac{\pi}{4} + \pi n\]
\[Ответ:\ - \frac{\pi}{4} + \pi n.\]
\[3)\ 2\sin^{2}x - 5\sin x\cos x -\]
\[- 3\cos^{2}x = 0\ \ \ \ \ |\ :\cos^{2}x\]
\[2tg^{2}x - 5tgx - 3 = 0\]
\[Пусть\ tgx = y:\]
\[2y^{2} - 5y - 3 = 0\]
\[D = 25 + 24 = 49\]
\[y_{1} = \frac{5 + 7}{4} = 3;\ \ \ \]
\[y_{2} = \frac{5 - 7}{4} = - \frac{1}{2}.\]
\[1)\ tg\ x = - \frac{1}{2}\]
\[x = - arctg\frac{1}{2} + \pi k.\]
\[2)\ tg\ x = 3\]
\[x = arctg\ 3 + \pi k.\]
\[Ответ:\ - arctg\frac{1}{2} + \pi k;\]
\[\ arctg\ 3 + \pi k.\]
\[4)\ 3\sin^{2}x - 14\sin x\cos x -\]
\[- 5\cos^{2}x = 0\ \ \ \ \ |\ :\cos^{2}x\ \]
\[3tg^{2}x - 14tg\ x - 5 = 0\]
\[Пусть\ tg\ x = y:\]
\[3y^{2} - 14y - 5 = 0\]
\[D_{1} = 49 + 15 = 64\]
\[y_{1} = \frac{7 + 8}{3} = 5;\ \ \]
\[\ y_{2} = \frac{7 - 8}{3} = - \frac{1}{3}.\]
\[1)\ tgx = - \frac{1}{3}\]
\[x = - arctg\frac{1}{3} + \pi k.\]
\[2)\ tg\ x = 5\]
\[x = arctg\ 5 + \pi k.\]
\[Ответ:\ - arctg\frac{1}{3} + \pi k;\ \]
\[\ arctg\ 5 + \pi k.\]