\[\boxed{\mathbf{1194}\mathbf{.}}\]
\[1)\ tg^{2}\ x = 2\]
\[tg\ x = \pm \sqrt{2}\]
\[x = \pm arctg\ \sqrt{2} + \pi n\]
\[Ответ:\ \pm arctg\ \sqrt{2} + \pi n.\]
\[2)\ tg\ x = ctg\ x\]
\[tg\ x = \frac{1}{\text{tg\ x}}\]
\[tg^{2}\ x = 1\]
\[\frac{1 - \cos{2x}}{1 + \cos{2x}} = 1\]
\[1 - \cos{2x} = 1 + \cos{2x}\]
\[\cos{2x} + \cos{2x} = 1 - 1\]
\[2\cos{2x} = 0\]
\[\cos{2x} = 0\]
\[2x = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n\]
\[x = \frac{1}{2} \bullet \left( \frac{\pi}{2} + \pi n \right) = \frac{\pi}{4} + \frac{\text{πn}}{2}\]
\[Ответ:\ \ \frac{\pi}{4} + \frac{\text{πn}}{2}.\]
\[3)\ tg^{2}\ x - 3\ tg\ x - 4 = 0\]
\[Пусть\ y = tg\ x:\]
\[y^{2} - 3y - 4 = 0\]
\[D = 3^{2} + 4 \bullet 4 = 9 + 16 = 25\]
\[y_{1} = \frac{3 - 5}{2} = - 1\ \ и\]
\[\text{\ \ }y_{2} = \frac{3 + 5}{2} = 4.\]
\[Первое\ уравнение:\]
\[tg\ x = - 1\]
\[x = - arctg\ 1 + \pi n = - \frac{\pi}{4} + \pi n.\]
\[Второе\ уравнение:\]
\[tg\ x = 4\]
\[x = arctg\ 4 + \pi n.\]
\[Ответ:\ - \frac{\pi}{4} + \pi n;\ \ arctg\ 4 + \pi n.\]
\[4)\ tg^{2}\ x - tg\ x + 1 = 0\]
\[Пусть\ y = tg\ x:\]
\[y^{2} - y + 1 = 0\]
\[D = 1^{2} - 4 = 1 - 4 = - 3\]
\[D < 0 - \ корней\ нет.\]
\[Ответ:\ \ корней\ нет.\]