\[\boxed{\mathbf{1177}\mathbf{.}}\]
\[1)\sin\left( \arcsin\frac{1}{3} + \arccos\frac{2\sqrt{2}}{3} \right) =\]
\[= \sin\left( \arcsin\frac{1}{3} \right) \bullet\]
\[\bullet \cos\left( \arccos\frac{2\sqrt{2}}{3} \right) +\]
\[+ \sin\left( \arccos\frac{2\sqrt{2}}{3} \right) \bullet\]
\[\bullet \cos\left( \arcsin\frac{1}{3} \right) =\]
\[= \frac{1}{3} \bullet \frac{2\sqrt{2}}{3} +\]
\[+ \sqrt{1 - \cos^{2}\left( \arccos\frac{2\sqrt{2}}{3} \right)} \bullet\]
\[\bullet \sqrt{1 - \sin^{2}\left( \arcsin\frac{1}{3} \right)} =\]
\[= \frac{2\sqrt{2}}{9} + \sqrt{1 - \left( \frac{2\sqrt{2}}{3} \right)^{2}} \bullet\]
\[\bullet \sqrt{1 - \left( \frac{1}{3} \right)^{2}} = \frac{2\sqrt{2}}{9} +\]
\[+ \sqrt{\frac{9}{9} - \frac{8}{9}} \bullet \sqrt{\frac{9}{9} - \frac{1}{9}} =\]
\[= \frac{2\sqrt{2}}{9} + \sqrt{\frac{1}{9}} \bullet \sqrt{\frac{8}{9}} = \frac{2\sqrt{2}}{9} + \frac{\sqrt{8}}{9} =\]
\[= \frac{2\sqrt{2}}{9} + \frac{2\sqrt{2}}{9} = \frac{4\sqrt{2}}{9}\]
\[Ответ:\ \ \frac{4\sqrt{2}}{9}.\]
\[2)\cos\left( \arcsin\frac{3}{5} + \arccos\frac{4}{5} \right) =\]
\[= \cos\left( \arcsin\frac{3}{5} \right) \bullet\]
\[\bullet \cos\left( \arccos\frac{4}{5} \right) - \sin\left( \arcsin\frac{3}{5} \right) \bullet\]
\[\bullet \sin\left( \arccos\frac{4}{5} \right) =\]
\[= \sqrt{1 - \sin^{2}\left( \arcsin\frac{3}{5} \right)} \bullet \frac{4}{5} -\]
\[- \frac{3}{5} \bullet \sqrt{1 - \cos^{2}\left( \arccos\frac{4}{5} \right)} =\]
\[= \sqrt{1 - \left( \frac{3}{5} \right)^{2}} \bullet \frac{4}{5} - \frac{3}{5} \bullet\]
\[\bullet \sqrt{1 - \left( \frac{4}{5} \right)^{2}} = \sqrt{\frac{25}{25} - \frac{9}{25}} \bullet \frac{4}{5} -\]
\[- \frac{3}{5} \bullet \sqrt{\frac{25}{25} - \frac{16}{25}} =\]
\[= \sqrt{\frac{16}{25}} \bullet \frac{4}{5} - \frac{3}{5} \bullet \sqrt{\frac{9}{25}} = \frac{4}{5} \bullet \frac{4}{5} -\]
\[- \frac{3}{5} \bullet \frac{3}{5} = \frac{16}{25} - \frac{9}{25} = \frac{7}{25}\]
\[Ответ:\ \ \frac{7}{25}.\]