\[\boxed{\mathbf{1169}\mathbf{.}}\]
\[1)\ 1 + \cos{5x} \bullet \sin{4x} =\]
\[= \cos{4x} \bullet \sin{5x}\]
\[\sin{5x} \bullet \cos{4x} -\]
\[- \sin{4x} \bullet \cos{5x} = 1\]
\[\sin(5x - 4x) = 1\]
\[\sin x = 1\]
\[x = \arcsin 1 + 2\pi n\]
\[x = \frac{\pi}{2} + 2\pi n\]
\[Ответ:\ \ x = \frac{\pi}{2} + 2\pi n.\]
\[2)\ 1 - \sin x \bullet \cos{2x} =\]
\[= \cos x \bullet \sin{2x}\]
\[\sin{2x} \bullet \cos x + \sin x \bullet \cos{2x} = 1\]
\[\sin(2x + x) = 1\]
\[\sin{3x} = 1\]
\[3x = \arcsin 1 + 2\pi n = \frac{\pi}{2} + 2\pi n\]
\[x = \frac{1}{3} \bullet \left( \frac{\pi}{2} + 2\pi n \right)\]
\[x = \frac{\pi}{6} + \frac{2\pi n}{3}\]
\[Ответ:\ \ x = \frac{\pi}{6} + \frac{2\pi n}{3}.\]