\[\boxed{\mathbf{1161}\mathbf{.}}\]
\[1)\arcsin 1 - \arcsin( - 1) =\]
\[= \arcsin 1 + \arcsin 1 =\]
\[= \frac{\pi}{2} + \frac{\pi}{2} = \pi\]
\[2)\arcsin\frac{1}{\sqrt{2}} + \arcsin\left( - \frac{1}{\sqrt{2}} \right) =\]
\[= \arcsin\frac{1}{\sqrt{2}} - \arcsin\frac{1}{\sqrt{2}} = 0\]
\[3)\arcsin\frac{1}{2} + \arcsin\frac{\sqrt{3}}{2} = \frac{\pi}{6} +\]
\[+ \frac{\pi}{3} = \frac{\pi + 2\pi}{6} = \frac{3\pi}{6} = \frac{\pi}{2}\]
\[4)\arcsin\left( - \frac{\sqrt{3}}{2} \right) +\]
\[+ \arcsin\left( - \frac{1}{2} \right) = - \arcsin\frac{\sqrt{3}}{2} -\]
\[- \arcsin\frac{1}{2} = - \frac{\pi}{3} - \frac{\pi}{6} =\]
\[= \frac{- 2\pi - \pi}{6} = - \frac{3\pi}{6} = - \frac{\pi}{2}\]