\[\boxed{\mathbf{1155}\mathbf{.}}\]
\[\arccos a = x,\ если\cos x = a\ \ \]
\[и\ \ 0 \leq x \leq \pi.\]
\[a - положительное\ число:\]
\[\cos\left( \arccos a \right) = \cos x = a;\]
\[\cos\left( \arccos( - a) \right) =\]
\[= \cos\left( \pi - \arccos(a) \right) =\]
\[= \cos(\pi - x) = - \cos x = - a.\]
\[1)\cos\left( \arccos{0,2} \right) = 0,2\]
\[2)\cos\left( \arccos\left( - \frac{2}{3} \right) \right) = - \frac{2}{3}\]
\[3)\cos\left( \pi + \arccos\frac{3}{4} \right) =\]
\[= - \cos\left( \arccos\frac{3}{4} \right) = - \frac{3}{4}\]
\[4)\sin\left( \frac{\pi}{2} + \arccos\frac{1}{3} \right) =\]
\[= \cos\left( \arccos\frac{1}{3} \right) = \frac{1}{3}\]
\[5)\sin\left( \arccos\frac{4}{5} \right) =\]
\[= \sqrt{1 - \cos^{2}\left( \arccos\frac{4}{5} \right)} =\]
\[= \sqrt{1 - \left( \frac{4}{5} \right)^{2}} = \sqrt{\frac{25}{25} - \frac{16}{25}} =\]
\[= \sqrt{\frac{9}{25}} = \frac{3}{5}\]
\[6)\ tg\left( \arccos\frac{3}{\sqrt{10}} \right) =\]
\[\text{=}\sqrt{\frac{1}{\cos^{2}\left( \arccos\frac{3}{\sqrt{10}} \right)} - 1\ } =\]
\[= \sqrt{1\ :\left( \frac{3}{\sqrt{10}} \right)^{2} - 1} =\]
\[= \sqrt{\frac{10}{9} - \frac{9}{9}} = \sqrt{\frac{1}{9}} = \frac{1}{3}\]