\[\boxed{\mathbf{1150}\mathbf{.}}\]
\[1)\arccos\left( \sqrt{6} - 3 \right):\]
\[4 < 6 < 9\]
\[2 < \sqrt{6} < 3\]
\[- 1 < \sqrt{6} - 3 < 0\]
\[Ответ:\ \ да.\]
\[2)\arccos\left( \sqrt{7} - 2 \right):\]
\[4 < 7 < 9\]
\[2 < \sqrt{7} < 3\]
\[0 < \sqrt{7} - 2 < 1\]
\[Ответ:\ \ да.\]
\[3)\arccos\left( 2 - \sqrt{10} \right):\]
\[9 < 10 < 16\]
\[3 < \sqrt{10} < 4\]
\[- 4 < - \sqrt{10} < - 3\]
\[- 2 < 2 - \sqrt{10} < - 1\]
\[Ответ:\ \ нет.\]
\[4)\arccos\left( 1 - \sqrt{5} \right):\]
\[4 < 5 < 9\]
\[2 < \sqrt{5} < 3\]
\[- 3 < - \sqrt{5} < - 2\]
\[- 2 < 1 - \sqrt{5} < - 1\]
\[Ответ:\ \ нет.\]
\[5)\ tg\left( 3\arccos\frac{1}{2} \right) =\]
\[= \text{tg}\left( 3 \bullet \frac{\pi}{3} \right) = tg\ \pi = 0\]
\[Ответ:\ \ да.\]
\[6)\ arcos\ (\cos 3)\]
\[\left| \cos(3) \right| < 0\]
\[Ответ:да.\]