Решебник по алгебре и начала математического анализа 10 класс Колягин Задание 1144

Авторы:
Тип:учебник

Задание 1144

\[\boxed{\mathbf{1144}\mathbf{.}}\]

\[1)\ 2\arccos 0 + 3\arccos 1 =\]

\[= 2 \bullet \frac{\pi}{2} + 3 \bullet 0 = \pi + 0 = \pi\]

\[2)\ 3\arccos( - 1) - 2\arccos 0 =\]

\[= 3\left( \pi - \arccos 1 \right) - 2 \bullet \frac{\pi}{2} =\]

\[= 3(\pi - 0) - \pi =\]

\[= 3\pi - \pi = 2\pi\]

\[3)\ 12\arccos\frac{\sqrt{3}}{2} -\]

\[- 3\arccos\left( - \frac{1}{2} \right) = 12 \bullet \frac{\pi}{6} -\]

\[- 3\left( \pi - \arccos\frac{1}{2} \right) =\]

\[= 2\pi - 3\left( \pi - \frac{\pi}{3} \right) = 2\pi -\]

\[- 3\pi + \pi = 0\]

\[4)\ 4\arccos\left( - \frac{\sqrt{2}}{2} \right) +\]

\[+ 6\arccos\left( - \frac{\sqrt{3}}{2} \right) =\]

\[= 4\left( \pi - \arccos\frac{\sqrt{2}}{2} \right) +\]

\[+ 6\left( \pi - \arccos\frac{\sqrt{3}}{2} \right) =\]

\[= 4\left( \pi - \frac{\pi}{4} \right) + 6\left( \pi - \frac{\pi}{6} \right) =\]

\[= 4\pi - \pi + 6\pi - \pi = 8\pi\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам