\[\boxed{\mathbf{1124}\mathbf{.}}\]
\[1)\ 1 + tg\ a \bullet tg\ \beta = \frac{\cos(a - \beta)}{\cos a \bullet \cos\beta}\]
\[1 + tg\ a \bullet tg\ \beta = 1 + \frac{\sin a}{\cos a} \bullet\]
\[\bullet \frac{\sin\beta}{\cos\beta} =\]
\[= \frac{\cos a \bullet \cos\beta + \sin a \bullet \sin\beta}{\cos a \bullet \cos\beta} =\]
\[= \frac{\cos(a - \beta)}{\cos a \bullet \cos\beta}\]
\[\frac{\cos(a - \beta)}{\cos a \bullet \cos\beta} = \frac{\cos(a - \beta)}{\cos a \bullet \cos\beta}\]
\[Что\ и\ требовалось\ доказать.\]
\[2)\ tg\ a - tg\ \beta = \frac{\sin(a - \beta)}{\cos a \bullet \cos\beta}\]
\[tg\ a - tg\ \beta = \frac{\sin a}{\cos a} - \frac{\sin\beta}{\cos\beta} =\]
\[= \frac{\sin a \bullet \cos\beta - \sin\beta \bullet \cos a}{\cos a \bullet \cos\beta} =\]
\[= \frac{\sin(a - \beta)}{\cos a \bullet \cos\beta}\]
\[\frac{\sin(a - \beta)}{\cos a \bullet \cos\beta} = \frac{\sin(a - \beta)}{\cos a \bullet \cos\beta}\]
\[Что\ и\ требовалось\ доказать.\]