\[\boxed{\mathbf{1114}\mathbf{.}}\]
\[\cos\left( \frac{\pi}{4} + 2x \right)\cos\left( \frac{\pi}{8} - 2x \right) =\]
\[= \frac{1}{2}\cos\frac{3\pi}{8} + \frac{1}{2}\cos\left( \frac{\pi}{8} + 4x \right)\]
\[Функция\ принимает\ \]
\[наименьшее\ значение\ при:\]
\[\cos\left( \frac{\pi}{8} + 4x \right) = 1\]
\[\frac{\pi}{8} + 4x = \pi + 2\pi k\]
\[4x = \frac{7\pi}{8} + 2\text{πk}\]
\[x = \frac{7\pi}{32} + \frac{\text{πk}}{2}\text{.\ }\]