\[\boxed{\mathbf{1100}\mathbf{.}}\]
\[1)\cos{22{^\circ}} + \cos{24{^\circ}} + \cos{26{^\circ}} +\]
\[+ \cos{28{^\circ}} =\]
\[= 2 \bullet \cos\frac{22{^\circ} + 24{^\circ}}{2} \bullet\]
\[\bullet \cos\frac{22{^\circ} - 24{^\circ}}{2} +\]
\[+ 2 \bullet \cos\frac{26{^\circ} + 28{^\circ}}{2} \bullet\]
\[\bullet \cos\frac{26{^\circ} - 28{^\circ}}{2} =\]
\[= 2 \bullet \cos\frac{46{^\circ}}{2} \bullet \cos\left( - \frac{2{^\circ}}{2} \right) + 2 \bullet\]
\[\bullet \cos\frac{54{^\circ}}{2} \bullet \cos\left( - \frac{2{^\circ}}{2} \right) =\]
\[= 2 \bullet \cos{23{^\circ}} \bullet \cos{1{^\circ}} + 2 \bullet\]
\[\bullet \cos{27{^\circ}} \bullet \cos{1{^\circ}} = 2\cos{1{^\circ}} \bullet\]
\[\bullet \left( \cos{23{^\circ}} + \cos{27{^\circ}} \right) =\]
\[= 2\cos{1{^\circ}} \bullet 2 \bullet \cos\frac{23{^\circ} + 27{^\circ}}{2} \bullet\]
\[\bullet \cos\frac{23{^\circ} - 27{^\circ}}{2} = 4\cos{1{^\circ}} \bullet\]
\[\bullet \cos\frac{50{^\circ}}{2} \bullet \cos\left( - \frac{4{^\circ}}{2} \right) =\]
\[= 4\cos{1{^\circ}} \bullet \cos{2{^\circ}} \bullet \cos{25{^\circ}}\]
\[2)\cos\frac{\pi}{12} + \cos\frac{\pi}{4} + \cos\frac{5\pi}{6} =\]
\[= 2 \bullet \cos\frac{\frac{\pi}{12} + \frac{\pi}{4}}{2} \bullet \cos\frac{\frac{\pi}{12} - \frac{\pi}{4}}{2} +\]
\[+ \cos\left( \pi - \frac{\pi}{6} \right) =\]
\[= 2 \bullet \cos\frac{4\pi}{24} \bullet \cos\left( - \frac{2\pi}{24} \right) -\]
\[- \cos\frac{\pi}{6} = 2 \bullet \cos\frac{\pi}{6} \bullet \cos\frac{\pi}{12} -\]
\[- \cos\frac{\pi}{6} =\]
\[= 2\cos\frac{\pi}{6} \bullet \left( \cos\frac{\pi}{12} - \frac{1}{2} \right) =\]
\[= 2 \bullet \frac{\sqrt{3}}{2} \bullet \left( \cos\frac{\pi}{12} - \cos\frac{\pi}{3} \right) =\]
\[= \sqrt{3} \bullet ( - 2) \bullet \sin\frac{\frac{\pi}{12} + \frac{\pi}{3}}{2} \bullet\]
\[\bullet \sin\frac{\frac{\pi}{12} - \frac{\pi}{3}}{2} = - 2\sqrt{3} \bullet \sin\frac{5\pi}{24} \bullet\]
\[\bullet \sin\left( - \frac{3\pi}{24} \right) =\]
\[= 2\sqrt{3} \bullet \sin\frac{5\pi}{24} \bullet \sin\frac{\pi}{8}\]