\[\boxed{\mathbf{1065}\mathbf{.}}\]
\[\cos a = 0,6\ \ и\ \ 0 < a < \frac{\pi}{2}:\ \]
\[угол\ \text{a\ }принадлежит\ I\ \]
\[четверти.\]
\[1)\sin\frac{a}{2}\]
\[\sin^{2}\frac{a}{2} = \frac{1 - \cos a}{2} = \frac{1 - 0,6}{2} =\]
\[= \frac{0,4}{2} = \frac{2}{10} = \frac{1}{5}\]
\[\sin\frac{a}{2} = \sqrt{\frac{1}{5}} = \sqrt{\frac{5}{25}} = \frac{\sqrt{5}}{5}\]
\[Ответ:\ \ \frac{\sqrt{5}}{5}.\]
\[2)\cos\frac{a}{2}\]
\[\cos^{2}\frac{a}{2} = \frac{1 + \cos a}{2} = \frac{1 + 0,6}{2} =\]
\[= \frac{1,6}{2} = 0,8 = \frac{4}{5}\]
\[\cos\frac{a}{2} = \sqrt{\frac{4}{5}} = \frac{2}{\sqrt{5}} = \frac{2\sqrt{5}}{5}\]
\[Ответ:\ \ \frac{2\sqrt{5}}{5}.\]
\[3)\ tg\frac{a}{2}\]
\[tg^{2}\frac{a}{2} = \frac{1 - \cos a}{1 + \cos a} = \frac{1 - 0,6}{1 + 0,6} =\]
\[= \frac{0,4}{1,6} = \frac{4}{16} = \frac{1}{4}\]
\[tg = \sqrt{\frac{1}{4}} = \frac{1}{2}\]
\[Ответ:\ \ \frac{1}{2}.\]
\[4)\ ctg\frac{a}{2}\]
\[\text{ct}g^{2}\frac{a}{2} = \frac{1 + \cos a}{1 - \cos a} = \frac{1 + 0,6}{1 - 0,6} =\]
\[= \frac{1,6}{0,4} = \frac{16}{4} = 4\]
\[ctg = \sqrt{4} = 2\]
\[Ответ:\ \ 2.\]