\[\boxed{\mathbf{1061}\mathbf{.}}\]
\[1)\cos\frac{\pi}{5} \cdot \cos\frac{2\pi}{5} = 0,25\]
\[\sin\frac{\pi}{5} \cdot \cos\frac{\pi}{5} \cdot \frac{\cos\frac{2\pi}{5}}{\sin\frac{\pi}{5}} = 0,25\]
\[\frac{1}{2} \cdot \sin\frac{2\pi}{5} \cdot \frac{\cos\frac{2\pi}{5}}{\sin\frac{\pi}{5}} = 0,25\]
\[\frac{1}{4} \cdot \frac{\sin\frac{4\pi}{5}}{\sin\frac{\pi}{5}} = 0,25\]
\[\frac{1}{4} \cdot \frac{\sin\left( \pi - \frac{\pi}{5} \right)}{\sin\frac{\pi}{5}} = 0,25\]
\[\frac{1}{4} = 0,25\]
\[0,25 = 0,25\]
\[Равенство\ доказано.\]
\[2)\ 8\cos{10{^\circ}} \cdot \cos{20{^\circ}} \cdot \cos{40{^\circ}} =\]
\[= ctg\ 10{^\circ}\ \]
\[8\cos{10{^\circ}} \bullet \cos{20{^\circ}} \bullet \cos{40{^\circ}} =\]
\[= ctg\ 10{^\circ};\]
\[\frac{4}{\sin{10{^\circ}}} \bullet \left( 2\sin{10{^\circ}} \bullet \cos{10{^\circ}} \right) \bullet\]
\[\bullet \cos{20{^\circ}} \bullet \cos{40{^\circ}} = ctg\ 10{^\circ};\]
\[\frac{2}{\sin{10{^\circ}}} \bullet \left( 2\sin{20{^\circ}} \bullet \cos{20{^\circ}} \right) \bullet\]
\[\bullet \cos{40{^\circ}} = ctg\ 10{^\circ};\]
\[\frac{2\sin{40{^\circ}} \bullet \cos{40{^\circ}}}{\sin{10{^\circ}}} = ctg\ 10{^\circ};\]
\[\frac{\sin{80{^\circ}}}{\sin{10{^\circ}}} = ctg\ 10{^\circ};\]
\[\frac{\sin(90{^\circ} - 10{^\circ})}{\sin{10{^\circ}}} = ctg\ 10{^\circ};\]
\[\frac{\cos{10{^\circ}}}{\sin{10{^\circ}}} = ctg\ 10{^\circ};\]
\[ctg\ 10{^\circ} = ctg\ 10{^\circ};\]
\[Равенство\ доказано.\]
\[3)\ 16\cos{20{^\circ}} \cdot \cos{40{^\circ}} \cdot\]
\[\bullet \cos{60{^\circ}} \cdot \cos{80{^\circ}} = 1\]
\[5)\ \frac{\text{tg}\frac{a}{2}}{\cos a} = tg\ a - tg\frac{a}{2}\]
\[tg\ a - tg\frac{a}{2} = \frac{\text{tg}\frac{a}{2}}{\cos a}\]
\[\frac{2\text{tg}\frac{a}{2}}{1 - tg\frac{a}{2}} - tg\frac{a}{2} = \frac{\text{tg}\frac{a}{2}}{\cos a}\]
\[\text{tg}\frac{a}{2}\left( \frac{2}{1 - tg\frac{a}{2}} - 1 \right) = \frac{\text{tg}\frac{a}{2}}{\cos a}\]
\[\text{tg}\frac{a}{2} \cdot \frac{1 + tg^{2}\frac{a}{2}}{1 - tg^{2}\frac{a}{2}} = \frac{\text{tg}\frac{a}{2}}{\cos a}\]
\[\text{tg}\frac{a}{2} \cdot \frac{\cos^{2}\frac{a}{2} + \sin^{2}\frac{a}{2}}{\cos^{2}\frac{a}{2} - \sin^{2}\frac{a}{2}} = \frac{\text{tg}\frac{a}{2}}{\cos a}\]
\[\frac{\text{tg}\frac{a}{2}}{\cos a} = \frac{\text{tg}\frac{a}{2}}{\cos a}\]
\[Равенство\ доказано.\]
\[6)\sin{3a}\sin^{3}a +\]
\[+ \cos{3a} \cdot \cos^{3}a = \cos{2a}\]
\[Преобразуем\ левую\ часть\]
\[\ равенства:\]
\[\left( \sin a\cos{2a} + \cos a\sin{2a} \right) \cdot\]
\[\cdot \sin^{2}a +\]
\[+ \left( \cos{2a}\cos a - \sin a\sin{2a} \right) \cdot\]
\[\cdot {cos²}a =\]
\[{= \sin^{4}}a\cos{2a} +\]
\[+ \sin{2a}\cos a\sin^{2}a +\]
\[+ \cos{2a}\cos^{4}a -\]
\[- \sin a\cos^{3}a\sin{2a} =\]
\[= \cos{2a}\left( \sin^{4}a + \cos^{4}a \right) +\]
\[+ \sin{2a}\cos a\sin a \cdot\]
\[\cdot \left( \sin^{2}a - \cos^{2}a \right) = A\]
\[1 = \left( \cos^{2}a + \sin^{2}a \right)^{2} =\]
\[= \cos^{4}a +\]
\[+ 2\sin^{2}a\cos^{2}a + \sin^{4}a\]
\[\cos^{4}a + \sin^{4}a = 1 - \frac{1}{2}\sin^{2}{2a}\]
\[A:\]
\[\cos{2a}\left( 1 - \frac{1}{2}\sin^{2}{2a} \right) -\]
\[- \frac{1}{2}\sin^{2}{2a} \cdot \left( - \cos{2a} \right) =\]
\[= \cos{2a}\left( 1 - \frac{1}{2}\sin^{2}{2a} + \frac{1}{2}\sin^{2}{2a} \right) =\]
\[= \cos{2a} \cdot 1 = \cos{2a}\]
\[\cos{2a} = \cos{2a}\]
\[Равенство\ доказано.\]