\[\boxed{\mathbf{1024.}}\]
\[1)\cos{135{^\circ}} = \cos(90{^\circ} + 45{^\circ}) =\]
\[= \cos{90{^\circ}} \bullet \cos{45{^\circ}} -\]
\[- \sin{90{^\circ}} \bullet \sin{45{^\circ}} =\]
\[= 0 \bullet \frac{\sqrt{2}}{2} - 1 \bullet \frac{\sqrt{2}}{2} = - \frac{\sqrt{2}}{2}\]
\[2)\cos{120{^\circ}} = \cos(60{^\circ} + 60{^\circ}) =\]
\[= \cos{60{^\circ}} \bullet \cos{60{^\circ}} -\]
\[- \sin{60{^\circ}} \bullet \sin{60{^\circ}} =\]
\[= \frac{1}{2} \bullet \frac{1}{2} - \frac{\sqrt{3}}{2} \bullet \frac{\sqrt{3}}{2} = \frac{1}{4} - \frac{3}{4} =\]
\[= - \frac{2}{4} = - \frac{1}{2}\]
\[3)\cos{150{^\circ}} = \cos(90{^\circ} + 60{^\circ}) =\]
\[= \cos{90{^\circ}} \bullet \cos{60{^\circ}} -\]
\[- \sin{90{^\circ}} \bullet \sin{60{^\circ}} =\]
\[= 0 \bullet \frac{1}{2} - 1 \bullet \frac{\sqrt{3}}{2} = - \frac{\sqrt{3}}{2}\]
\[4)\cos{240{^\circ}} = \cos(180{^\circ} + 60{^\circ}) =\]
\[= \cos{180{^\circ}} \bullet \cos{60{^\circ}} -\]
\[- \sin{180{^\circ}} \bullet \sin{60{^\circ}} =\]
\[= - 1 \bullet \frac{1}{2} - 0 \bullet \frac{\sqrt{3}}{2} = - \frac{1}{2}\]