\[\boxed{\mathbf{1015.}}\]
\[1)\sin^{3}a(1 + ctg\ a) +\]
\[+ \cos^{3}a(1 + tg\ a) =\]
\[= \sin a + \cos a\]
\[\sin^{3}a \cdot \frac{1}{\sin^{2}a} + \cos^{3}a \cdot \frac{1}{\cos^{2}a} =\]
\[= \sin a + \cos a\]
\[\sin a + \cos a = \sin a + \cos a\]
\[Тождество\ доказано.\]
\[2)\ 1 - \left( \sin^{6}a + \cos^{6}a \right) =\]
\[= 3\sin^{2}a \cdot \cos^{2}a\]
\[\sqrt{\frac{1 - \cos a}{1 + \cos a}} - \sqrt{\frac{1 + \cos a}{1 - \cos a}} =\]
\[= 2ctg\ a\ \]
\[\frac{1 - \cos a - \left( 1 + \cos a \right)}{\sqrt{1 - \cos^{2}a}} =\]
\[= 2ctg\ a\ \]
\[\frac{- 2\cos a}{- \sin a} = 2ctg\ a\]
\[2ctg\ a = 2ctg\ a\ \]
\[Тождество\ доказано.\]