\[\boxed{\mathbf{1011.}}\]
\[1)\ 2\sin x + \sin^{2}x + \cos^{2}x = 1\]
\[2\sin x + 1 = 1\]
\[2\sin x = 0\]
\[\sin x = 0\]
\[точки\ на\ окружности:\]
\[(1;\ 0)\text{\ \ }и\ \ ( - 1;\ 0).\]
\[принимает\ значения:\]
\[x_{1} = 0 + 2\pi k\ \ и\ \ x_{2} = \pi + 2\pi k\]
\[Ответ:\ \ x = \pi k.\]
\[2)\ 2\sin^{2}x + 3\cos^{2}x - 2 = 0\]
\[2\sin^{2}x + 3\cos^{2}x -\]
\[- 2\left( \sin^{2}x + \cos^{2}x \right) = 0\]
\[2\sin^{2}x + 3\cos^{2}x - 2\sin^{2}x -\]
\[- 2\cos^{2}x = 0\]
\[\cos^{2}x = 0\]
\[\cos x = 0\]
\[точки\ на\ окружности:\]
\[(0;\ 1)\text{\ \ }и\ \ (0;\ - 1).\]
\[\text{\ x\ }принимает\ значения:\]
\[x_{1} = \frac{\pi}{2} + 2\pi k\ \ и\ \ x_{2} = - \frac{\pi}{2} + 2\pi k\]
\[Ответ:\ \ x = \frac{\pi}{2} + \pi k.\]
\[3)\ 3\cos^{2}x - 2\sin x =\]
\[= 3 - 3\sin^{2}x\]
\[3\cos^{2}x - 2\sin x =\]
\[= 3\left( 1 - \sin^{2}x \right)\]
\[3\cos^{2}x - 2\sin x = 3\cos^{2}x\]
\[- 2\sin x = 0\]
\[\sin x = 0\]
\[точки\ на\ окружности:\]
\[(1;\ 0)\text{\ \ }и\ \ ( - 1;\ 0).\]
\[\text{x\ }принимает\ значения:\]
\[x_{1} = 0 + 2\pi k\ \ и\ \ x_{2} = \pi + 2\pi k\]
\[Ответ:\ \ x = \pi k.\]
\[4)\cos^{2}x - \sin^{2}x = 2\sin x -\]
\[- 1 - 2\sin^{2}x\]
\[\cos^{2}x + \sin^{2}x = 2\sin x - 1\]
\[1 = 2\sin x - 1\]
\[2 = 2\sin x\]
\[\sin x = 1\]
\[точка\ на\ окружности:\]
\[(0;\ 1).\]
\[\text{\ x\ }принимает\ значение:\]
\[x = \frac{\pi}{2} + 2\pi k\]
\[Ответ:\ \ x = \frac{\pi}{2} + 2\pi k.\]