\[\boxed{\mathbf{101}.}\]
\[1)\ a \geq 0;\]
\[\left( 1 + a\sqrt{a} \right)\left( a\sqrt{a} - 1 \right) = a^{3} - 1\]
\[\left( \sqrt{a^{3}} + 1 \right)\left( \sqrt{a^{3}} - 1 \right) = a^{3} - 1\]
\[a^{3} - 1 = a^{3} - 1\]
\[Что\ и\ требовалось\ доказать.\]
\[2)\ a > 0;b > 0;\]
\[\left( \sqrt{\frac{a}{b}} + \sqrt{\frac{b}{a}} \right)^{2} - 2 = \frac{a^{2} + b^{2}}{\text{ab}}\]
\[\frac{a}{b} + 2\sqrt{\frac{a}{b} \cdot \frac{b}{a}} + \frac{b}{a} - 2 = \frac{a^{2} + b^{2}}{\text{ab}}\]
\[\frac{a}{b} + 2 + \frac{b}{a} - 2 = \frac{a^{2} + b^{2}}{\text{ab}}\]
\[\frac{a^{\backslash a}}{b} + \frac{b^{\backslash b}}{a} = \frac{a^{2} + b^{2}}{\text{ab}}\]
\[\frac{a^{2} + b^{2}}{\text{ab}} = \frac{a^{2} + b^{2}}{\text{ab}}\]
\[Что\ и\ требовалось\ доказать.\]