\[\boxed{\text{1317.\ }\text{еуроки}\text{-}\text{ответы}\text{\ }\text{на}\text{\ }\text{пятёрку}}\]
\[\left\{ \begin{matrix} x = \frac{a - b}{a + b} \\ y = \frac{b - c}{b + c} \\ z = \frac{c - a}{c + a} \\ \end{matrix} \right.\ ,\ \ a + b \neq 0,\ \ \]
\[b + c \neq 0,\ \ c + a \neq 0\]
\[(1 + x)(1 + y)(1 + z) =\]
\[= (1 - x)(1 - y)(1 - z)\text{\ \ \ }\]
\[(1 + x)(1 + y)(1 + z) =\]
\[= \left( 1 + \frac{a - b}{a + b} \right)\left( 1 + \frac{b - c}{b + c} \right) \cdot\]
\[\cdot \left( 1 + \frac{c - a}{c + a} \right) =\]
\[= \frac{a + b + a - b}{a + b} \cdot \frac{b + c + b - c}{b + c} \cdot\]
\[\cdot \frac{c + a + c - a}{c + a} =\]
\[= \left( \frac{2a}{a + b} \right)\left( \frac{2b}{b + c} \right)\left( \frac{2c}{c + a} \right) =\]
\[= \left( 1 - \frac{a - b}{a + b} \right)\left( 1 - \frac{b - c}{b + c} \right)\]
\[\cdot \left( 1 - \frac{c - a}{c + a} \right) =\]
\[= (1 - x)(1 - y)(1 - z),\]
\[\text{\ \ }то\ есть\]
\[(1 + x)(1 + y)(1 + z) =\]
\[= (1 - x)(1 - y)(1 - z) \Longrightarrow\]
\[\Longrightarrow ч.т.д.\]