Вопрос:

Выполните сложение или вычитание дробей: (3x^2-8y^2)/(x^2-2xy)-(3xy-x^2)/(xy-2y^2).

Ответ:

\[\frac{3x^{2} - 8y^{2}}{x^{2} - 2xy} - \frac{3xy - x^{2}}{xy - 2y^{2}} =\]

\[= \frac{3x^{2} - 8{y^{2}}^{\backslash y}}{x(x - 2y)} - \frac{3xy - {x^{2}}^{\backslash x}}{y(x - 2y)} =\]

\[= \frac{3x^{2}y - 8y^{3} - 3x^{2}y + x^{3}}{\text{xy}(x - 2y)} =\]

\[= \frac{x^{3} - 8y^{3}}{\text{xy}(x - 2y)} =\]

\[= \frac{(x - 2y)\left( x^{2} + 2xy + 4y^{2} \right)}{\text{xy}(x - 2y)} =\]

\[= \frac{x^{2} + 2xy + 4y^{2}}{\text{xy}}.\]

Похожие