\[\sin\alpha = - \frac{4}{5};\ \ \]
\[180{^\circ} < \alpha < 270{^\circ} \Longrightarrow \cos\alpha < 0;\ \ \]
\[tg\ \alpha > 0;\ \ ctg\ \alpha > 0.\]
\[\cos\alpha = \sqrt{1 - \sin^{2}\alpha} =\]
\[= \sqrt{1 - \left( - \frac{4}{5} \right)^{2}} = \sqrt{1 - \frac{16}{25}} =\]
\[= \sqrt{\frac{9}{25}} = \left| \frac{3}{5} \right| = - \frac{3}{5}\]
\[tg\ \alpha = - \frac{4}{5}\ :\left( - \frac{3}{5} \right) = \frac{4}{3} = 1\frac{1}{3}\]
\[ctg\ \alpha = - \frac{3}{5}\ :\left( - \frac{4}{5} \right) = \frac{3}{4}.\]