Здравствуйте, ученики! Сейчас мы подробно разберем каждое задание.
1. Вычислить:
1) $$-3,7 + (-5,93)$$
$$-3,7 - 5,93 = -(3,7 + 5,93) = \mathbf{-9,63}$$
2) $$6,563 - 8,43$$
$$6,563 - 8,43 = -(8,43 - 6,563) = \mathbf{-1,867}$$
3) $$-5,92 - (-3,21)$$
$$-5,92 + 3,21 = -(5,92 - 3,21) = \mathbf{-2,71}$$
4) $$\frac{5}{16} - (-\frac{3}{8})$$
$$\frac{5}{16} + \frac{3}{8} = \frac{5}{16} + \frac{6}{16} = \frac{5+6}{16} = \frac{11}{16} = \mathbf{\frac{11}{16}}$$
5) $$-\frac{9}{11} + \frac{4}{3}$$
$$-\frac{9}{11} + \frac{4}{3} = \frac{-9 \cdot 3 + 4 \cdot 11}{33} = \frac{-27 + 44}{33} = \frac{17}{33} = \mathbf{\frac{17}{33}}$$
6) $$\frac{5}{9} : (-\frac{27}{20})$$
$$\frac{5}{9} : (-\frac{27}{20}) = \frac{5}{9} \cdot (-\frac{20}{27}) = -\frac{5 \cdot 20}{9 \cdot 27} = -\frac{100}{243} = \mathbf{-\frac{100}{243}}$$
7) $$-\frac{4}{7} \cdot \frac{8}{7}$$
$$-\frac{4}{7} \cdot \frac{8}{7} = -\frac{4 \cdot 8}{7 \cdot 7} = -\frac{32}{49} = \mathbf{-\frac{32}{49}}$$
8) $$-6,1 \cdot 0,3$$
$$-6,1 \cdot 0,3 = -1,83 = \mathbf{-1,83}$$
9) $$-3,5 \cdot (-0,4)$$
$$-3,5 \cdot (-0,4) = 1,4 = \mathbf{1,4}$$
10) $$\frac{13}{34} \cdot (-\frac{17}{26})$$
$$\frac{13}{34} \cdot (-\frac{17}{26}) = -\frac{13 \cdot 17}{34 \cdot 26} = -\frac{13 \cdot 17}{2 \cdot 17 \cdot 2 \cdot 13} = -\frac{1}{2 \cdot 2} = -\frac{1}{4} = \mathbf{-\frac{1}{4}}$$
2. Выполните действия:
1) $$(\frac{-7}{18} + \frac{11}{12}) : (-\frac{19}{48})$$
Первым делом упростим выражение в первых скобках: $$\frac{-7}{18} + \frac{11}{12} = \frac{-7 \cdot 2 + 11 \cdot 3}{36} = \frac{-14 + 33}{36} = \frac{19}{36}$$
Теперь разделим полученное значение на вторую дробь: $$\frac{19}{36} : (-\frac{19}{48}) = \frac{19}{36} \cdot (-\frac{48}{19}) = -\frac{19 \cdot 48}{36 \cdot 19} = -\frac{48}{36} = -\frac{4}{3} = \mathbf{-\frac{4}{3}}$$
2) $$(\frac{10}{21} - \frac{25}{28}) : (-\frac{11}{14} + \frac{14}{35})$$
Сначала упростим выражение в первых скобках:
$$\frac{10}{21} - \frac{25}{28} = \frac{10 \cdot 4 - 25 \cdot 3}{84} = \frac{40 - 75}{84} = \frac{-35}{84} = -\frac{5}{12}$$
Упростим выражение во вторых скобках:
$$-\frac{11}{14} + \frac{14}{35} = \frac{-11 \cdot 5 + 14 \cdot 2}{70} = \frac{-55 + 28}{70} = \frac{-27}{70}$$
Теперь разделим первую дробь на вторую:
$$-\frac{5}{12} : (-\frac{27}{70}) = \frac{5}{12} \cdot \frac{70}{27} = \frac{5 \cdot 70}{12 \cdot 27} = \frac{350}{324} = \frac{175}{162} = \mathbf{\frac{175}{162}}$$
3. Решить уравнение:
$$(3x + 6)(x - 11) = 0$$
Уравнение равно нулю, когда один из множителей равен нулю. Следовательно:
$$3x + 6 = 0$$ или $$x - 11 = 0$$
Решаем первое уравнение:
$$3x = -6$$
$$x = -2$$
Решаем второе уравнение:
$$x = 11$$
Ответ: $$x = -2$$ или $$x = 11$$. $$\mathbf{x = -2; 11}$$
4. Задача про весы:
В январе весы стоили 2800 рублей. В феврале они подешевели на 15%, а в марте - ещё на 5%. Сколько рублей стали стоить весы в апреле?
1. Цена после снижения на 15% в феврале:
$$2800 - 2800 \cdot 0,15 = 2800 - 420 = 2380$$ рублей.
2. Цена после снижения на 5% в марте:
$$2380 - 2380 \cdot 0,05 = 2380 - 119 = 2261$$ рубль.
Ответ: В апреле весы стали стоить 2261 рубль.