Вопрос:

Сумма первых трёх членов геометрической прогрессии равно 14, а сумма их квадратов равна 84. Найдите первый член прогрессии, ее знаменатель и сумму первых шести членов.

Ответ:

\[\left\{ \begin{matrix} b_{1}\left( q^{2} - q + 1 \right) = 6\ \ \\ b_{1}\left( q^{2} + q + 1 \right) = 14 \\ \end{matrix} \right.\ \]

\[2b_{1}q = 8\]

\[b_{1}q = 4.\]

\[b_{1}\left( q^{2} - q + 1 \right) = 6\ \ \ | \cdot q\]

\[b_{1}q\left( q^{2} - q + 1 \right) = 6q\]

\[4 \cdot \left( q^{2} - q + 1 \right) = 6q\]

\[4q^{2} - 4q + 4 - 6q = 0\]

\[4q^{2} - 10q + 4 = 0\ \ \ |\ :2\]

\[2q^{2} - 5q + 2 = 0\]

\[D = 25 - 16 = 9\]

\[q_{1} = \frac{5 + 3}{4} = 2;\ \ \ q_{2} = \frac{5 - 3}{4} = \frac{1}{2}.\]

\[При\ \ q = 2:\]

\[b_{1} = \frac{4}{q} = \frac{4}{2} = 2;\]

\[S_{6} = \frac{2 \cdot \left( 2^{6} - 1 \right)}{2 - 1} = 126.\]

\[При\ q = \frac{1}{2}:\]

\[b_{1} = \frac{4}{q} = 8;\]

\[S_{6} = \frac{\frac{1}{8} \cdot \left( 1 - \frac{1}{64} \right)}{1 - \frac{1}{2}} = 15,75.\]


Похожие