\[b_{1};b_{1}q;b_{1}q^{2};\ldots\]
\[S_{3} = b_{1} + b_{1}q + b_{1}q^{2} = 13;\ \ \]
\[b_{1}^{2} + b_{1}^{2}q^{2} + b_{1}^{2}q^{4} = 91.\]
\[6q^{2} - 20q + 6 = 0\ \ \ |\ :2\]
\[3q^{2} - 10q + 3 = 0\]
\[D_{1} = 25 - 9 = 16\]
\[q_{1} = \frac{5 + 4}{3} = 3;\ \ \]
\[q_{2} = \frac{5 - 4}{3} = \frac{1}{3}.\]
\[\left\{ \begin{matrix} q = \frac{1}{3}\ \\ b_{1} = 9 \\ \end{matrix} \right.\ \ \ \ \ или\ \ \left\{ \begin{matrix} q = 3\ \ \\ b_{1} = 1 \\ \end{matrix} \right.\ \]
\[Ответ:q = \frac{1}{3};b_{1} = 9\ \ или\ \]
\[\ q = 3;\ \ b_{1} = 1.\]