\[S_{3} = 28;\ \ q = \frac{1}{2}:\]
\[S_{3} = b_{1} \cdot \frac{q^{3} - 1}{q - 1}\]
\[b_{1} \cdot \frac{\left( \frac{1}{2} \right)^{3} - 1}{\frac{1}{2} - 1\ } = 28\]
\[b_{1} \cdot \frac{\frac{1}{8} - 1}{- \frac{1}{2}} = 28\]
\[b_{1} = 28\ :\frac{7}{4}\]
\[b_{1} = 16.\]
\[S_{7} = b_{1} \cdot \frac{1 - q^{7}}{1 - q} = 16 \cdot \frac{1 - \frac{1}{128}}{1 - \frac{1}{2}} =\]
\[= 32 \cdot \frac{127}{128} = \frac{127}{4} = 31\frac{3}{4}.\]
\[Ответ:31\frac{3}{4}.\]