\[2x + 5\]
\[x = 0:\]
\[2x + 5 = 2 \cdot 0 + 5 = 5.\]
\[x = - 1\frac{2}{3}:\]
\[2x + 5 = 2 \cdot \left( - 1\frac{2}{3} \right) + 5 =\]
\[= 2 \cdot \left( - \frac{5}{3} \right) + 5 = - \frac{10}{3} + 5 =\]
\[= - \frac{10}{3} + \frac{15}{3} = \frac{5}{3} = 1\frac{2}{3}\]
\[5 > 1\frac{2}{3}.\]
\[Следовательно,\ при\ x = 0\ \]
\[значение\ выражения\ больше.\]