\[- c^{2} < ( - c)^{2}\text{\ \ \ \ \ \ }\]
\[c = - 3:\ \ \ \]
\[- ( - 3)^{2} = - 3^{2} = - 9 < 0;\]
\[\left( - ( - 3) \right)^{2} = 3^{2} = 9 > 0.\]
\[- c^{2} = ( - c)^{2}\text{\ \ \ }\]
\[c = 0:\]
\[- 0^{2} = 0;\ \ \ \ \ \]
\[( - 0)^{2} = 0.\]
\[- c^{2} < ( - c)^{2}\text{\ \ \ \ }\]
\[\ c = 4:\]
\[- 4^{2} = - 16 < 0;\ \ \]
\[( - 4)^{2} = 4^{2} = 16 > 0.\]