\[\frac{2x^{2} - 2y^{2} - x + y}{1 - 2x - 2y} =\]
\[= \frac{2 \cdot \left( x^{2} - y^{2} \right) - (x - y)}{1 - 2x - 2y} =\]
\[= \frac{(x - y)\left( 2 \cdot (x + y) - 1 \right)}{1 - 2x - 2y} =\]
\[= \frac{(x - y)(2x + 2y - 1)}{- (2x + 2y - 1)} =\]
\[= - (x - y) = y - x\]