Вопрос:

Сократите дробь (1-4a-4b)/(4a^2-4b^2+b-a).

Ответ:

\[\frac{1 - 4a - 4b}{4a^{2} - 4b^{2} + b - a} =\]

\[= \frac{1 - 4a - 4b}{4 \cdot \left( a^{2} - b^{2} \right) + (b - a)} =\]

\[= \frac{1 - 4a - 4b}{4 \cdot \left( a^{2} - b^{2} \right) - (a - b)} =\]

\[= \frac{1 - 4a - 4b}{(a - b)\left( 4 \cdot (a + b) - 1 \right)} =\]

\[= \frac{1 - 4a - 4b}{(a - b)(4a + 4b - 1)} =\]

\[= \frac{- (4a + 4b - 1)}{(a - b)(4a + 4b - 1)} = - \frac{1}{a - b}\]

Похожие