\[\frac{2x^{2} + 11x - 6}{- 3x^{2} - x^{3} + 18x} =\]
\[= \frac{(2x - 1)(x + 6)}{- x(x + 6)(x - 3)} = \frac{2x - 1}{3x - x^{2}}.\]
\[2)\ 2x^{2} + 11x - 6 =\]
\[= 2\left( x - \frac{1}{2} \right)(x + 6) =\]
\[= (2x - 1)(x + 6)\]
\[D = 121 + 48 = 169\]
\[x_{1} = \frac{( - 11 + 13)}{4} = \frac{1}{2};\]
\[x_{2} = \frac{- 11 - 13}{4} = - 6.\]
\[2) - 3x^{2} - x^{3} + 18x =\]
\[= - x\left( x^{2} + 3x - 18 \right) =\]
\[= - x(x + 6)(x - 3)\]
\[x_{1} + x_{2} = - 3;\ \ x_{1} \cdot x_{2} = - 18\]
\[x_{1} = - 6;\ \ \ x_{2} = 3.\]