\[\frac{x}{2x + 6} = \frac{2}{x};\ \ \ \ \ \ \ \ \ x \neq 0;\ \ \ x \neq - 3\ \ \]
\[2 \cdot (2x + 6) = x^{2}\]
\[4x + 12 = x^{2}\]
\[x^{2} - 4x - 12 = 0\]
\[D = 4 + 12 = 16\]
\[x_{1} = 2 + 4 = 6;\ \ x_{2} = 2 - 4 = - 2.\]
\[Ответ:x = - 2;\ \ x = 6.\ \]