\[x^{6} - x^{4} + 5x^{2} - 5 = 0\]
\[x^{4}\left( x^{2} - 1 \right) + 5\left( x^{2} - 1 \right) = 0\]
\[\left( x^{4} + 5 \right)\left( x^{2} - 1 \right) = 0\]
\[x^{4} + 5 = 0;\ \ \ \ \ x^{2} - 1 = 0\]
\[x^{4} = - 5\ \ \ \ \ \ \ \ \ \ \ \ x^{2} = 1\]
\[нет\ корней\ \ \ \ x = \pm 1.\]
\[Ответ:\ \ x = \pm 1.\]