\[x^{4} - 5x^{2} - 36 = 0\]
\[Пусть\ t = x^{2} \geq 0:\ \ \]
\[t^{2} - 5t - 36 = 0\]
\[t_{1} + t_{2} = 5;\ \ t_{1} \cdot t_{2} = - 36\]
\[\Longrightarrow t_{1} = 9,\ \ t_{2} = - 4.\]
\[x^{2} = 9\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x^{2} = - 4\]
\[x = \pm 3\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ нет\ решения.\]
\[Ответ:\ x = \pm 3.\]