\[x^{3} - x^{2} + bx + 24 = 0\]
\[Так\ как\ \ 3 - корень\ \Longrightarrow\]
\[\Longrightarrow 3b + 42 = 0\]
\[3b + 42 = 0\]
\[3b = - 42\]
\[b = - 14.\]
\[x^{3} - x^{2} - 14x + 24 = 0\]
\[x^{2} + 2x + (b + 6) =\]
\[= x^{2} + 2x - 8\]
\[(x - 3)\left( x^{2} + 2x - 8 \right) = 0\]
\[x - 3 = 0;\ \ \ \ \ \ x = 3.\]
\[x^{2} + 2x - 8 = 0\]
\[D = 2^{2} - 4 \cdot 1 \cdot ( - 8) =\]
\[= 4 + 32 = 36;\ \ \ \ \sqrt{D} = 6.\]
\[x_{1} = \frac{- 2 + 6}{2} = \frac{4}{2} = 2;\ \ \ \ \ \ \ \]
\[x_{2} = \frac{- 2 - 6}{2} = \frac{- 8}{2} = - 4\]
\[Ответ:3;2;\ - 4.\]