\[x^{3} + x^{2} + bx - 24 = 0\]
\[Так\ как\ ( - 2) - корень\ \Longrightarrow\]
\[\Longrightarrow - 2b - 28 = 0\]
\[- 2b - 28 = 0\]
\[- 2b = 28\]
\[b = - 14.\]
\[x^{3} + x^{2} - 14x - 24 = 0\]
\[x^{2} - x + (b + 2) = x^{2} - x - 12\]
\[(x + 2)\left( x^{2} - x - 12 \right) = 0\]
\[x + 2 = 0\]
\[x = - 2.\]
\[x^{2} - x - 12 = 0\]
\[D = ( - 1)^{2} - 4 \cdot 1 \cdot ( - 12) =\]
\[= 1 + 48 = 49;\ \ \ \sqrt{D} = 7.\]
\[x_{1} = \frac{1 + 7}{2} = \frac{8}{2} = 4;\ \ \ \ \ \]
\[\ x_{2} = \frac{1 - 7}{2} = \frac{- 6}{2} = - 3\]
\[Ответ:\ - 2;4;\ - 3.\]