\[x² - x\left( 2 - \sqrt{3} \right) - 2\sqrt{3} = 0\]
\[= 4 - 4\sqrt{3} + 3 + 8\sqrt{3} =\]
\[= 7 + 4\sqrt{3} =\]
\[= 4 + 4\sqrt{3} + 3 = \left( 2 + \sqrt{3} \right)^{2}\]
\[x_{1} = \frac{2 - \sqrt{3} + \sqrt{\left( 2 + \sqrt{3} \right)^{2}}}{2 \cdot 1} =\]
\[= \frac{2 - \sqrt{3} + 2 + \sqrt{3}}{2} = \frac{4}{2} = 2\]
\[x_{2} = \frac{2 - \sqrt{3} - \sqrt{\left( 2 + \sqrt{3} \right)^{2}}}{2 \cdot 1} =\]
\[= \frac{2 - \sqrt{3} - 2 - \sqrt{3}}{2} =\]
\[= - \frac{2\sqrt{3}}{2} = - \sqrt{3}\]
\[Ответ:x = 2;x = - \sqrt{3}.\]