\[\left( x^{2} - 4 \right)\left( x^{2} + x - 2 \right) = 0\]
\[(x - 2)(x + 2)\left( x^{2} + x - 2 \right) = 0\]
\[x - 2 = 0\]
\[x = 2\]
\[x + 2 = 0\]
\[x = - 2\]
\[x^{2} + x - 2 = 0\]
\[D = 1^{2} - 4 \cdot 1 \cdot ( - 2) = 1 + 8 =\]
\[= 9\]
\[x_{1} = \frac{- 1 + \sqrt{9}}{2} = \frac{- 1 + 3}{2} = \frac{2}{2} = 1\]
\[x_{2} = \frac{- 1 - \sqrt{9}}{2} = \frac{- 1 - 3}{2} = \frac{- 4}{2} =\]
\[= - 2\]
\[Ответ:2;\ - 2;\ 1.\]