Вопрос:

Решите уравнение: x^2-3x+4/(x-2)=4/(x-2)-2.

Ответ:

\[x^{2} - 3x + \frac{4}{x - 2} = \frac{4}{x - 2} - 2;\ \ \ \]

\[x \neq 2\]

\[x^{2} - 3x + 2 = 0\]

\[D = ( - 3)^{2} - 4 \cdot 1 \cdot 2 = 9 - 8 = 1\]

\[x_{1} = \frac{3 + \sqrt{1}}{2 \cdot 1} = \frac{3 + 1}{2} =\]

\[= \frac{4}{2} = 2\ (не\ подходит)\]

\[x_{2} = \frac{3 - \sqrt{1}}{2 \cdot 1} = \frac{3 - 1}{2} = \frac{2}{2} = 1\]

\[Ответ:x = 1.\]

Похожие