\[\ x² - 2x - 35 = 0\]
\[x_{1} + x_{2} = 2\]
\[x_{1} \cdot x_{2} = - 35 \Longrightarrow x_{1} = 7\ \ \ и\ \ \ \ x_{2} = - 5.\]
\[Ответ:x_{1} = 7\ \ \ и\ \ x_{2} = - 5.\]
\[Пусть\ b\ см - одна\ сторона\ \]
\[прямоугольника.\]
\[По\ условию\ задачи,\ периметр\ 30\ см\ и\ \]
\[площадь\ равна\ 56\ см^{2}\text{.\ }\]
\[Составим\ уравнение:\]
\[2 \cdot \left( b + \frac{56}{b} \right) = 30\]
\[b^{\backslash b} + \frac{56}{b} = 15^{\backslash b}\]
\[b^{2} - 15b + 56 = 0\]
\[b_{1} + b_{2} = 15\]
\[b_{1} \cdot b_{2} = 56 \Longrightarrow b_{1} = 8\ \ \ и\ \ b_{2} = 7.\]
\[3)\ 15 - 8 = 7\ (см).\]
\[4)\ 15 - 7 = 8\ (см).\]
\[Ответ:стороны\ равны\ 7\ см\ и\ 8\ см.\]
\[x^{2} + 11x + q = 0\ \ \ \ и\ \ \ x_{1} = - 7\]
\[x_{1} + x_{2} = - 11\]
\[- 7 + x_{2} = - 11\]
\[x_{2} = - 4.\]
\[x_{1} \cdot x_{2} = q\]
\[- 7 \cdot ( - 4) = q\]
\[q = 28\]
\[Ответ:x_{2} = - 4\ \ \ и\ \ q = 28.\]
\[\ 7x² - 9x + 2 = 0\]
\[D = b^{2} - 4ac = 81 - 4 \cdot 7 \cdot 2 = 81 - 56 =\]
\[= 25\]
\[x_{1} = \frac{9 + 5}{14} = \frac{14}{14} = 1\]
\[x_{2} = \frac{9 - 5}{14} = \frac{4}{14} = \frac{2}{7}\]
\[Ответ:\ \ x_{1} = 1\ \ и\ \ x_{2} = \frac{2}{7}.\]