\[\ x^{2} - 16x + 63 = 0\]
\[x_{1} + x_{2} = 16\]
\[x_{1} \cdot x_{2} = 63 \Longrightarrow x_{1} = 7\ \ \ и\ \ x_{2} = 9\]
\[Ответ:\ \ x_{1} = 7\ \ \ и\ \ \ x_{2} = 9.\]
\[Пусть\ b\ см - одна\ сторона\ \]
\[прямоугольника.\]
\[По\ условию\ задачи,\ периметр\ равен\ \]
\[20\ см\ и\ площадь\ равна\ 24\ см^{2}.\]
\[Составим\ уравнение:\]
\[2 \cdot \left( b + \frac{24}{b} \right) = 20\]
\[b^{\backslash b} + \frac{24}{b} = 10^{\backslash b}\]
\[b^{2} - 10b + 24 = 0\]
\[b_{1} + b_{2} = 10\]
\[b_{1} \cdot b_{2} = 24\]
\[\Longrightarrow b_{1} = 4\ \ \ и\ b_{2} = 6.\]
\[3)\ 10 - 6 = 4\ (см).\]
\[4)\ 10 - 4 = 6\ (см).\]
\[Ответ:стороны\ равны\ 4\ см\ и\ 6\ см.\]
\[x^{2} + \text{px} - 18 = 0\ \ \ \ \ \ и\ \ \ \ x_{1} = - 9\]
\[x_{1} + x_{2} = - p\]
\[- 9 + 2 = - p\]
\[- 7 = - p\]
\[p = 7.\]
\[x_{1} \cdot x_{2} = - 18\]
\[- 9 \cdot x_{2} = - 18\]
\[x_{2} = 2.\]
\[Ответ:\ \ x_{2} = 2\ \ \ и\ \ p = 7.\]
\[\ 3x² + 13x - 10 = 0\]
\[D = b^{2} - 4ac = 169 - 4 \cdot 3 \cdot ( - 10) =\]
\[= 169 + 120 = 289\]
\[x_{1} = \frac{- 13 - 17}{6} = - \frac{30}{6} = - 5\]
\[x_{2} = \frac{- 13 + 17}{6} = \frac{4}{6} = \frac{2}{3}\]
\[Ответ:x_{1} = - 5\ \ \ и\ \ x_{2} = \frac{2}{3}.\]