\[t = x^{2} + 2x;\ \ \]
\[t^{2} + 13t + 12 = 0\]
\[D = 13^{2} - 4 \cdot 1 \cdot 12 = 169 =\]
\[= 169 - 48 = 121\]
\[t_{1} = \frac{- 3 + \sqrt{121}}{2} = \frac{- 13 + 11}{2} =\]
\[= \frac{- 2}{2} = - 1\]
\[t_{2} - \frac{- 13 - \sqrt{121}}{2} = \frac{- 13 - 11}{2} =\]
\[= \frac{- 24}{2} = - 12\]
\[1)\ x^{2} + 2x = - 1\ \ \ \ \]
\[x^{2} + 2x + 1 = 0\ \ \ \ \ \]
\[(x + 1)^{2} = 0\ \ \ \]
\[x + 1 = 0\ \ \]
\[x = - 1.\]
\[2)\ x^{2} + 2x = - 12\ \ \ \]
\[x^{2} + 2x + 12 = 0\]
\[D = 2^{2} - 4 \cdot 1 \cdot 12 = 4 - 48 =\]
\[= - 44 < 0\]
\[нет\ решения.\]
\[Ответ:\ - 1.\]