Уравнение sin(5x) - sin(x) = 0 можно преобразовать по формуле разности синусов: sin(5x) - sin(x) = 2cos((5x+x)/2)sin((5x-x)/2) = 2cos(3x)sin(2x). Таким образом, уравнение равносильно 2cos(3x)sin(2x) = 0. Отсюда либо cos(3x) = 0, либо sin(2x) = 0. Решая каждое уравнение отдельно, находим x.